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1. INTRODUCTION

An inner function is a function on the unit circle T whose values almost
everywhere have modulus 1 and are the radial limits of a bounded ho10­
morphic function on the open unit disk U. Recently, Douglas and Rudin [3]
proved that, given a function I which is Lebesgue measurable and essentially
bounded on T and given € > 0, there exist inner functions f[J1 , if;1 , f[J2 , if;2 , ••• ,

<f!n , if;n and constants CI , ... , Cn such that

(1.1)

a.e. on T. In the present paper we give a constructive proof of this result.
More specifically, we prove that ifI is unimodular on T, then we can take,
in (1.1), n = 1, CI = 1, while if/is an arbitrary essentially bounded function
on T, we can take n = 2 and CI = C2 = tess SUP(zeT) Ij(z)l. We also give
another constructive proof for the case that I is continuous on T, and we
prove that the inner functions if;k in (1.1) can be chosen so that they do not
have any zeros in U.

In Section 3 we conclude with some remarks concerning the application
of the results obtained to the approximate solution of Wiener-Hopf
equations.

2. CONSTRUCTIVE PROOFS

We first establish our notation, which is similar to that in [3].
Let L"'(T) denote the set of all bounded complex functions I on the unit

circle T for whichj(ei8) is Lebesgue measurable in 0:(; () :(; 27T. We denote
by 11/1100 the essential suprenum of Ilion T, where IE L"'(T). A function
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CONSTRUCTIVE PROOFS FOR APPROXIMATION BY INNER FUNCTIONS 373

f E LOO(T) is unimodular if If I = 1 a.e. on T. The class H OO is the set of all
f EL OO(T) for which a_n = °if n > 0, where

n = 0, ±l, ±2,.... (2.1)

Each function f E HOO is thus given, almost everywhere, by the radial limit
of a function that is holomorphic and bounded on the open unit disk U.
A functionfE HOO is called an inner function iffis unimodular.

The following result, essential in our construction, is well known.

LEMMA 2.1. Let °< R1 < R2 < 00. Let T be the union of disjoint
measurable subsets E1 and E2 and let u be a function defined on T such that
.u = Rj on Ej • Then the function

I I In e
i8 + Z '1h(z) = exp -2 i8 _ log u(ei8) d8

7T -n e z
(z E U) (2.2)

is holomorphic in U, satisfies there R1 < I h(z)1 < R2 , and the radial limits
of h have modulus R j a.e. on E j •

For example, let R1 = R-1, R 2 = R. Let E1 = {e i8
1 81 ~ 8 < 82},

E2 = T - E1 • In view of Fig. 1, an easy computation yields the following
value for h(z):

h(z) = Rl+[(<x-2Ill/n j+[(2i/nllnb/aj.

T-E I

~=--.J.----71e,
o

z

Figure 1. The decomposition of T for Equation (2.3).

(2.3)
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Let °:(; 81 < 82 :(; 27T and let YJ1 > 0, YJ2 > °be such that the two circular
slits

Sl = {ei8 I 81 - YJ2 :(; 8 :(; 81 + YJ1}
S2 = {ei8 I 82 - YJ2 :(; 8 :(; 82 + YJ2}

do not overlap. We set

(2.4)

a = ei (8 1+82)/2,
A = tan[(82 - 81 - YJ1)/4], (2.5)
k = tan[(82 - 81 - YJ1)/4]/tan[(82 - 81+ YJ2)/4],

Remark. A case of practical importance occurs when 81 = 0, 82 = 7T.
In this case we choose YJ1' YJ2 and k so that k1/2 = tan[(7T - YJ1)/4] =
I/tan[(7T + YJ2)/4] and thus:

a = i,

A = k 1/ 2,

k = tan[(7T - YJ1)/4]/tan[(7T + YJ2)/4].

We use the following standard notation for elliptic functions:

Ix dt-1. _
sn (x, k) - 0 vel_ t2)(1 _ k 2t2) ,

K = K(k) = sn-1(I; k)

k' = vI - k2, K' = K(k'),

and set

R = exp{7TK/K'},

D(R1 , R2) = {t I R1 < I t I < R2},

D[R1 , R2] = {t I R1 :(; I t I :(; R2}·

We prove

(2.5')

(2.6)

(2.7)

LEMMA 2.2. Let °:(; 81 < 82 :(; 27T, and let YJ1 > 0, YJ2 > °be such that
the circular slits Sj , defined in (2.4), do not overlap. The function

z = <P(t) = a{I + iA sn[K'/7T log t; k]}
1 - iA sn[K'/7T log g; k] ,

(2.8)

where a, A and k are defined in (2.5), maps D(R1 , R2) = D(R-I, R) con­
formally onto the z-plane minus the slits Slj = 1, 2). As I t I approaches R j ,

<p(t) approaches a point of Slj = 1,2). The function <pm is regular in
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D(R~l, R) except for a simple pole at g = e-i13 , where f3 is the smallest positive
root of

'K'
Asn[~f3;k]=l. (2.9)

Remark. In the case of (2.5') we have f3 = 7T/2, i.e., the pole is at g= -i.

Proof The transformation

a(l + iO
z = 1 - i~

(2.10)

maps the z-plane minus the circular slits Sj conformally onto the ~ plane
minus the slits

~ = g = tan[(20 - 01 - O2)/4] I 01 - YJ2 ~ 0 ~ 01 + YJ1}, (2.11)
9; = g = tan[(20 - 01 - O2)/4] I O2 - YJ1 ~ 0 ~ O2 + YJ2},

since the circle z = eiO is mapped onto the real line ~ = tan[(20 - 01 - O2)/4].
The map [6, p. 192]

(2.12)

where A is defined by (2.5) (or (2.5') when 01 = 0, O2 = 7T), maps D(R-l, R)
conformally onto the ~-plane minus the slits Y;. We now use the second
relation (2.10) to obtain (2.8).

Clearly, if we set g = e-i13 , where f3 is defined by (2.9), then eJ>(g) = 00.

Furthermore, each of the maps used to construct eJ>(g) is conformal; hence,
g= e-i13 is a simple pole, and there is no other pole.

This completes the proof of Lemma 2.2.

LEMMA 2.3. Let f3 be as in Lemma 2.2. Let ko E (0, 1) be the unique
solution of the equation

(2.13)

where K o = K(ko), Ko' = K'(ko). Then the function

(2.14)

is holomorphic in D[R-l, R], maps this closed region onto [w I ~ 1, has
simple zeros at g = ±e-i13 , and satisfies

(2.15)
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Proof The map
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(2.16)

(2.18)

takes D[R-l, R] onto the ellipse1

€R = Iv Iv= ~ (p + p-l) cos t + ~ (p - p-l) sin t;

R-l < P < R, 0 < t < 217l (2.17)

The transformation [6, p. 77]

w = ~ sn [2;0 sin-1 v; ko],

where ko is defined by (2.13), maps €R conformally onto Iw I ~ 1.
If we now note that

·Hg + g-l) = cosh(log g) = cos(i log g) = sin (; - i log g) (2.19)

and substitute this onto (2.18), we find that the function

. /- [2iK ]
W2 = v ko sn Ko - 710g g; ko (2.20)

maps D[R-l, R] onto I W2 I < 1 so that I w2(R-1ei8) I = I w1(Rei8) I = 1.
Furthermore, if we replace g by geit, in (2.20), we obtain a function with
the same property. In particular, if we take t = f3 - 1T/2, we obtain the
function (2.14).

If we set g= ±rill in (2.14), we obtain w = O. By differentiating (2.14)
with respect to gwe obtain

I
dw 1

2
1
2i VkrA 1

2
- - 0 eill 1(1 - sn2u)1 I 1 - k 2 sn2 u Idg - 1Tg 0 ,

(2.21)

where u denotes the quantity in square brackets in (2.14). Setting g = ±rill,

we find that

and, hence, w has a simple zero at ±e-ill .

1 The map (2.16) is not a one-to-one map of the closed region D[R-\ R] onto the ellipse
<R. Rather, the ellipse <R is covered twice: once by the map of 1 ~ \ g I~ R and once
by the map of R-l ~ I gI ~ 1.
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THEOREM 2.4. Let E > 0 be given. Let E1 and E2 be disjoint measurable
subsets of T whose union is T, and let Al = ei81 and A2 = ei82 be complex
numbers of modulus 1, where 0 ~ B1 < B2 ~ 27T. Then there exist inner
functions CPl and CP2 such that

I Aj - [cpI(e i8)/cplei8)]1 < E for almost all Bsatisfying ei8 EO Ej , j = 1,2.

Such functions CPI , CP2 are given by

) ,- [-2f3Ko iKo r" ei8 + z i8 dB ]
CP2(Z = Vko sn + -2' i8 log u(e) ; ko ,7T 7T ._"e-z

i [K' J" e
i8 + z ' ] Ia ·1 + iA sn -- -c---Iog u(e'8) dB· k i

( 27T2 _" e'8 - z ' )
CPl(Z) = K' " ei8 + z ' . CP2(Z),

1 - iA sn [--J ---:---log u(e,e) dB, k]
27T 2 _" e'8 - z '

(2.22)

(2.23)

where u, A, k, k o , a, R1 , R2 and f3 are defined as in Lemmas 2.1,2.2, and 2.3,
and where 1]1 and 1]2 , employed in the definition of the slits SI , S2 , are chosen
to be < E.

Proof Choose the function u appearing in (2.22) and (2.23) as in
Lemma 2.1, where R1 = l/R, R 2 = R. Set <P1(t) = <P(O <P2(t), where <P is
given in (2.8) and <P2 in (2.14). By Lemma 2.1, h: V -+ D(R-I, R), and by
Lemmas 2.2 and 2.3, both <P and <P2 have modulus 1 on the boundary of
D(R-I, R), which implies the same for CPI, so that <Pj : D(R-I, R) -+ U.
Since h has radial limits R j a.e. on T, it follows that cp;(z) = <P;(h(z» are
inner functions. Setting cP = CPl/CP2' it follows by our construction that
limr -;l- cp(re i8) EO Sj for almost every eie EO Ej .

This completes the proof of Theorem 2.4.

THEOREM 2.5 (Douglas-Rudin). The set of all quotients of inner functions
is norm-dense in the set of all unimodular functions in L"'(T).

Proof Let f be a given function in L"'(T) which is unimodular, and let
E > 0 be given. We divide T into n(>2) equal arcs

Slil = lew I (j - t) 2; < B~ (j + t) 2; I,
and we define

j = 0, 1,... , n - 1,
(2.25)

(2.26)
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n is chosen so that 471"jn < E. Let 0<0 < Ej[2(n - 2) e}, (n - 2) 0 < I,
and let

j=I,2,... ,n-l, (2.27)

denote the ratio of inner functions constructed as in Theorem 2.4 which
approaches a point of Sli> within 0 of e2rrii/n as z approaches any point of
Elil, and which approaches a point of S(O) within 0 of I as z approaches a
point of E(O). The function

(2.28)

is clearly the ratio of two inner functions. For f(ei6) E Sli), the function fP
satisfies

If (e i6) - lim fP(re i6) I
r-:,1-

= If(eiO) - epli)(eiO) If epCkJ(eiO) I
k~l,kot'i

~ If(e iO) - epW(eiO)I + Iepli)(ei9) [I - iY. epck)(eiO)] I
k~l.k#1

~ 2; + (1 + o)n-2 - I a.e. on Eli), (2.29)

since If(eiO) - epli)(eiO)! ~ 271"/n a.e. on Eli), and since I epCkJ(eiO) - I I ~ 0
a.e. on T - ECk). Thus the extreme left of (2.29) is bounded almost every­
where by

271" + e(n-2J6 _ 1
n

271"< - + (n - 2) oeCn- 2)6
~ n

271"
~ - + (n - 2) oe

n
E E

<"2 +"2 = E. (2.30)

Notice that our proof establishes

COROLLARY 2.6. Given any f E L"'(T) which is unimodular on T, and given
any E > 0, there exist inner functions ep and if1 such that

a.e on T.

If( '6) I" ep(re
iO

) Ie' - 1m ,1,( '0) < E
r~l- 'f're'

(2.31)
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THEOREM 2.7 (Douglas-Rudin). Let Q be the set of all functions of the
form if;cp, where if; is a finite linear combination of inner functions and rp is
inner. Then Q is norm-dense in L oo(T).

Proof LetfE Loo(T) and set

M = Ilflloo, (2.32)

Let 8 > °be given, and let nand N be integers such that2

hI = (M - m)/n < 8/2,

For s = 1,2,... , n; t = 1,2,... , N, let

h2 = 27T/N < 8/(2M).

(2.35)

R s• t = {w = rew I m + (s - 1) hI ~ r < m + sh1 ; (t - 1) h2 ~ 8 < th2},

(2.33)

E s.t = {eie E T li(eie) ERst}. (2.34)

Let SI , S2 be defined by (2.4), where 81 = 0, 82 = 7T, TJ = 8(nNM), and let

G () = W st(z2
s.t Z lfst(z)

denote the ratio of the inner functions constructed as in Theorem 2.4 which
approaches Sf a.e. as Z approaches E;(J = 1,2), where E1 = E s•t ,

E2 = T - E s• t • Here we take w, A and k to be defined by (2.5').
We note that 1 is also the ratio of two inner functions, that HGs.t(eie) + IJ

approximates the characteristic function XE,.t of Es•t , and that

(2.36)

Upon taking wst to be the centroid of R st , it follows that the function

1
G<n.Nl(z) = 2" L wst[Gst(z) + 1]

s. t

= ! L B • t Ws.t TIs'",s.t'",t lfs',t'{z)[rp.•• t(z) + lfs,;{Z)]
2 TI " t' ./., ,(z)

ti. '-P S ,8

is a linear combination of ratios of inner functions which satisfies

(2.37)

If(e ie) - ~~1J!- Gln.Nl(reie)1 (eie E Est)

~ If(eie) - Wst I + ~ L I Wst I TJ < ~ + ~nNMTJ < 8 (2.38)
s' .t'

a.e. on T.

2 Without loss of generality we assume that M > m.
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We give now an alternative proof of Theorem 2.7, which is essentially
due to Rudin,3 and which shows that in the approximation off, two ratios
of inner functions suffice.

THEOREM 2.8. LetI E L OO(T), and let € > 0 be given. Then there exist inner
lunctions flJj and ifij , j = I, 2, such that

a.e. on T.

Proof. If 11/1100 = 0, the result is trivial, since we may then choose fIJi

and ifij arbitrarily. For the remainder of the proof, we shall assume that
11/1100 > O.

Let z = re iB , 0 :S;; r :S;; 1, and let

u = e- arc cos r, v = e+ arc cos r, (2.40)

where we assume that 0 :S;; arc cos r :S;; n12, and where we set u = 0, v = n
if r = O. Then the range of the functions

is T, and the functions

cx(z) = eiu ,

cx(f7ll/lloo),

{3(z) = eiv (2.41)

(2.42)

are unimodular functions in L OO(T). By Corollary 2.6, there are inner functions
fIJI , ifil , flJ2 , and ifi2 such that

a.e. on T. Since

1= II~II {cx(f/ll/lloo) + {3(flll/lloo)},

(2.43)

(2.44)

we obtain (2.39) from (2.43) and (2.44).
It is not always easy in practice to find the sets Es . t corresponding to the

R st , nor is it easy to evaluate the integral in (2.2). We therefore develop a
more explicit construction in terms of Riemann integrals. The function flJ2

3 Private communication.
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of Theorem 2.4 has several disadvantages from the point of view of an
explicit construction, since we cannot explicitly express koof (2.13). Therefore,
we shall now construct ep2 differently.

Let n > °be an integer, and let ex = 2TT/n. We define OJ = (j - !) ex,
j = 1,2,... , n, and

(2.45)

In the notation of Theorem 2.4, we take Al = 1, A2 = -1. Then in the
notation of Fig. 1 and (2.3), epl/ ep2 takes the special form

ep(j)(z) = i(l + i Vk sn[K{l + (ex - 2{3j/TT) + 2i/TT In bi+!/bj}; k)) (2.46)
1 - i Vk sn[K{l + (ex - 2{3j/TT) + 2i/TT In bj+l/bj}; k] ,

where E1 = E?>, E2 = T - E1 , and where

(
e i8i

+1
- Z)

{3j = arg i8. •e 1 - Z
(2.47)

The poles z = p;;/ of eplz) are given by the solutions of

K \1 + ex - 2{3j + 2i In bi+! ! = 4sK _ (2m + 1) iK',
! TT TT bj \ 2

m, s = 0, ± 1, ±2,... , (2.48)

and are explicitly expressed by

(j) i(j-J..)a (1 - iq!+mricxj2)

Pm = e ' (1 _ iqt+meicx j 2) ,

m = 0, ±l, ±2,... , j = 1,2,... , n,

where

q = e-1tK'jK.

(2.49)

(2.50)

It is thus clear that all the poles are simple.
We next construct a function cI>2,n(Z) which is analytic in U and which

has a simple zero at each simple pole of ep(j)(z). Such a cI>2.n(Z) is given
explicitly by

(2.51)
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It is easily seen that the product in (2.51) converges for every zED. In
fact, we may write

00

(/>2.n(Z) = TI
m=-OO

where

zn _ (_l)ny~)

1 - (_l)ny~Jzn '
(2.52)

It is readily seen that
00

L [1 - I y~JI]
m=-oo

(2.53)

(2.54)

converges absolutely, so that (2.52) converges. The property t (/>2.n(e i8)1 = 1
is also a consequence of the definition: each ratio on the right in (2.51) has
modulus 1 on T.

COROLLARY 2.9. Let f be continuous on T. Given 0 > 0, there exists
a linear combination Gln)(z) of ratios of inner functions such that

(2.55)

for all ei8 on T.

Proof Let us subdivide T into n disjoint subsets E~j) (j = 1,2'00" n;
s = 1,2), given by (2.45), such that

max. I feu) - f(v)[ < to,
u,vEE~J)

Seth = f(ei(j-lla.). Since

j = 1,2'00" n. (2.56)

(2.57)

(2.58)

where cplj)(z) and cpij)(z) are defined by (2.46) and (2.51), cpliJ(Z) is clearly
a ratio of inner functions. If, in the notation of Theorem 2.4, we take
TJ = o/(Mn), E1 = E~;), £2 = E~jJ, then I cpliJ(ei8) - 1 I < TJ on E1 ,

I cpli)(ei8) + 1 I < TJ on E2 . The function Gln)(z), defined by

GCnJ(z) = ! ih[cpli)(z) + 1]
2 ;=1

t L:_1 h[cpli)(z) + 1] (/>2.n(Z)
(/>n.2(Z)
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where <P2•n(z) is defined by (2,52), is clearly a linear combination of ratios
of inner functions which satisfies for ei8 E Eij):

t f(e i9
) - !~tp_ Gln)(rei9 )1 ~ I f(e i8

) - jj I + ~ 2: Ijj I TJ

8 1
< "2 + "2 MnYj < 8. (2.59)

A different constructive proof is possible by proceeding along the lines of
the proof of Theorem 2,8. We omit this, however.

In the following theorem, an inner function is called singular if it has no
zero in U.

THEOREM 2.10 (Douglas-Rudin). Let f E L"'(T) and let El > 0 be given.
Then there exists a singular inner function rp2 and a finite linear combination
.p2 of inner functions such that

(2.60)

Proof By Theorem 2.7, given E> 0, there exist an inner function rp
and a linear combination .p of inner functions such that

Ilf - .p/rp II", < E. (2.61)

In fact, with Gln,N)(z)(Gln)(z)) defined in (2.37) ((2.58)), we may take
rp = TIr,s .pr,sCrp = TIr .pr) and .p = Gln,N)/rp (.p = Gln)/rp).

The function rp has zeros in U which are removed by the following device
used in [3]. Define u(tv) by

[ w + 1 ]u(w) = exp c w _ 1 ' (2,62)

u(w) - e-3c

u (w) - ----;c~'-----".,_~
1 - w[l - e-30u(w)] ,

Then uI(w) is an inner function, and clearly

(2,63)

WE U. (2.64)

We now set IV = rp(z) in (2.64) and define the compositions

hI = Ul o rp,
.p2 = u2 0 rp.

Then hI and .p2 are inner, .p2 has no zero in U and

I .p2(Z) - rp(z) hI(z)1 < E2 , Z E U.

(2,65)

(2.66)
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Taking radial limits and dividing by !f;2rp, we get

(2.67)

To complete the proof, we take 8 = E1/2 in Theorem 2.7 (or Corollary 2.9)
and replace l/rp by h1!f;2 . Then we define rp2(Z) by

rp2(Z) = Gln,N)(z)rp(z) h1(z)

= ~ Ifr.s lIl !f;r·s'[rpr.s + !f;r.sJ!
T,S r' =l:-T

s' =F- s

l (D,. '/" ,) + 1 !exp c r.s 'f'r .8 _ e-3c
(D, . '/" .) - 1r.8 'fir ,8

[ l (D.. '/" .) + 1 !J .Il !f;r·." 1 - e-3c exp c r .8 'f'r .s
r' s' (D. . '/" .) - 1, r •s 'rr. s

(2.68)

Analogous results hold, corresponding to Theorem 2.8 and Corollary 2.9.
It seems natural to investigate what happens to some of the above approxi­

mate expressions as the error approaches zero. It would be interesting, for
example, to study what happens to the functions rplz) in (2.22) and (2.23),
and to W2 •n(z) in (2.51), as k -+ 1. This does not appear to be trivial.

It is known, for example [4], that there exist functions rpE(Z) and !f;E(Z),
both analytic in U, such that

(2.69)

a.e. on T. However, it is clear that there do not exist inner functions rp1'
rp2 , !f;1 , !f;2 such that

lim! j3!1(re
i8

) + rp2(re
i2.J = \ 1 if e

i8
E E, (2.70)

r-"1- 2, !f;1(rei8) !f;2(rei8) j I° if ei8 E T - E,

a.e. on T, unless either E or T - E has measure zero.

3. REMARKS ON THE ApPROXIMATE SOLUTION OF WIENER-HOPF EQUATIONS

Let R denote the real line, and consider the equation

f(x) = rk(x - t)f(t) dt + g(x), x > 0,
o

(3.1)
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where k, g E VCR). If, for every such given g, (3.1) has a solution/, then this
solution may be found by the classical Wiener-Hopf technique [I]. The chief
difficulty of carrying this out in practice is finding functions K+ and K_
such that the equation

holds everywhere on R, where

K(x) = JR eixtk(t) dt,

K+(x) = ( eixtk1(t) dt,

K_(x) = r eixtk 2(t) dt
-'"

(3.2)

(3.3)

and where k 1 , k 2 E VCR). The function K+(x + iy)(K_(x + iy)) is analytic
and bounded in {x + iy Iy )0 O}({x + iy Iy ~ On. Since direct approximate
methods for solving (3.1) are sorely lacking [2] we are tempted to apply the
technique developed in Section 2.

The transformation

I-w
z = i--­

I+w (w = u + iv, Z = x + iy) (3.4)

maps the upper half of the z-plane conformally onto I w I < I, while the
real line R (-00 < x < co) is mapped in a (1, I) manner onto I wi = 1.
The function K, defined by K(W) = [I - K(z(w))]-l, is thus in L"'(T), and
we can apply the analysis of Section 2 to obtain an approximate representa­
tion of K as a ratio of functions analytic in I w I < I and a fortiori to obtain
an approximate factorization of the form (3.2).

This outlined procedure has indeed been carried out yielding an approxi­
mate solution of the equation

f(t) = L J'" f(s) ds
. 27T 0 cosh«t - s)/2)

whose (exact) solution is known [1]; this approximate solution turned out
to be a very good approximation. However, since we have not been able to
establish that the approximate representations obtained in Section 2 con­
verge, as E ---+ 0, we have not been able, in general, to establish the conver­
gence of the approximate solution of (3.1) obtained by this technique. We
have thus chosen not to include here the details of this approximation method.
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In another paper [5] which was motivated by the present one, the author
derives a direct method (i.e., without the use of inner functions) of obtaining
an approximate factorization of the type (3.2), which converges to the unique
factorization, whenever a unique factorization exists. In [5] it is assumed that
k, g EO VCR) n VCR), and it is shown that the approximate solution of the
equation (3.1) obtained via the approximate factorization of the form (3.2)
converges to the exact solution.
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